Driver: Difference between revisions

Jump to navigation Jump to search
448 bytes added ,  30 January 2016
→‎Power Regulation: add FET driver
(replace LED's with LEDs)
(→‎Power Regulation: add FET driver)
Line 6: Line 6:


===Direct Drive===
===Direct Drive===


[[File:Nanjg-106-driver.jpg|thumb|300px|17mm linear regulator driver with 4 7135 chips and microprocessor]]If you apply the correct voltage, you don't need a driver at all. Lithium-ion batteries conveniently provide a decent voltage without any further modification. This is quite efficient since all of the power from the battery is delivered to the LED. However a fresh li-ion battery starts at 4.2 volts fully charged and will be 3.6 volts when it needs to be recharged. As power is applied to the LED, it will draw a certain amount of current from the battery. This current increases with the voltage. When the voltage is higher, the LED will be very bright and draw a great deal of current. As voltage decreases the light will dim and draw less current. If a constant brightness is desired, a driver that offers some kind of regulation is required. Also, many LEDs are being overdriven by 4.2 volts of a fresh li-ion battery.
[[File:Nanjg-106-driver.jpg|thumb|300px|17mm linear regulator driver with 4 7135 chips and microprocessor]]If you apply the correct voltage, you don't need a driver at all. Lithium-ion batteries conveniently provide a decent voltage without any further modification. This is quite efficient since all of the power from the battery is delivered to the LED. However a fresh li-ion battery starts at 4.2 volts fully charged and will be 3.6 volts when it needs to be recharged. As power is applied to the LED, it will draw a certain amount of current from the battery. This current increases with the voltage. When the voltage is higher, the LED will be very bright and draw a great deal of current. As voltage decreases the light will dim and draw less current. If a constant brightness is desired, a driver that offers some kind of regulation is required. Also, many LEDs are being overdriven by 4.2 volts of a fresh li-ion battery.
Line 13: Line 12:


Though people call this type of driver a linear regulator, linear regulators regulate the voltage. However these drivers have a number of AMC7135 current regulating chips installed. Each chip allows 350mA of current through and when wired in parallel, the current adds, so 700mA from 2 chips, 1050mA from 3 chips, and 1400mA from 4 (some drivers have higher binned regulator chips that allow 380mA through). Wiring 2 boards with 4 chips each gives 2800mA which is ideal for P7, MC-E, and XM-L LEDs. Constrained to a particular current, the LED will settle in at its [[Terminology#Vf|Vf]] for that current and the rest of the voltage from the battery will be converted to heat by the regulator chips. Because any voltage beyond the required amount is wasted as heat, supplying a higher voltage is less efficient and the board becomes more efficient as the input voltage approaches the output voltage. As the voltage supplied drops below the Vf of the LED plus some overhead for the chips, the driver drops out of regulation and goes into direct drive and the light will start to dim. These drivers can also have modes by using a microcontroller utilizing [[Terminology#PWM|PWM]] for lower modes and flashing modes.
Though people call this type of driver a linear regulator, linear regulators regulate the voltage. However these drivers have a number of AMC7135 current regulating chips installed. Each chip allows 350mA of current through and when wired in parallel, the current adds, so 700mA from 2 chips, 1050mA from 3 chips, and 1400mA from 4 (some drivers have higher binned regulator chips that allow 380mA through). Wiring 2 boards with 4 chips each gives 2800mA which is ideal for P7, MC-E, and XM-L LEDs. Constrained to a particular current, the LED will settle in at its [[Terminology#Vf|Vf]] for that current and the rest of the voltage from the battery will be converted to heat by the regulator chips. Because any voltage beyond the required amount is wasted as heat, supplying a higher voltage is less efficient and the board becomes more efficient as the input voltage approaches the output voltage. As the voltage supplied drops below the Vf of the LED plus some overhead for the chips, the driver drops out of regulation and goes into direct drive and the light will start to dim. These drivers can also have modes by using a microcontroller utilizing [[Terminology#PWM|PWM]] for lower modes and flashing modes.
===FET Driver===
This driver uses a field effect transistor (FET or MOSFET) in combination with a microprocessor to control current to the LED. The FET has very low resistance (lower than running the full current through the microprocessor) and can be controlled via PWM by the microprocessor. Some FET drivers add a linear regulator to reduce the need for PWM for lower modes. Without PWM, it is basically like running the light on direct drive.


===Boost Circuit===
===Boost Circuit===
confirmed, developer
1,668

edits

Navigation menu